If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.2x^2+1.2x=0
a = 1.2; b = 1.2; c = 0;
Δ = b2-4ac
Δ = 1.22-4·1.2·0
Δ = 1.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.2)-\sqrt{1.44}}{2*1.2}=\frac{-1.2-\sqrt{1.44}}{2.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.2)+\sqrt{1.44}}{2*1.2}=\frac{-1.2+\sqrt{1.44}}{2.4} $
| p+4.99=43.99 | | -12=w/4-15 | | 10+12x=-9+11x | | 5(3v-4)=85 | | x+16=1/2(4x+16) | | 6u+8=20 | | 3=g/20 | | 5r+3=48 | | W(14)=3x-7 | | 5v-6=14 | | (10x+22)-(7x+1)-38=180 | | 10x+22)-(7x+1)-38=180 | | 32⋅(.5)x+1=2x−14 | | -8x-70=90 | | 9x-13+10x-3=4x+2 | | 32⋅(12)x+1=2x−14 | | 0.5(x+300)=0.56x-288 | | (10x+22)-(7x+1)=180 | | 6x-11=5x+4 | | 180-x=x+180 | | (8+3e)e=2. | | 10x+22=7x+1 | | 6y-(3y+y)=17 | | 7x-8=6x+17 | | 5^x/8^x=19 | | 8=16-8x | | 6^-4x-2=36 | | f(0)=-3(0-1) | | 2(w-6)=-8 | | 4d=5=13 | | 7x+12=-X+48 | | 5x-(3-2x)=12 |